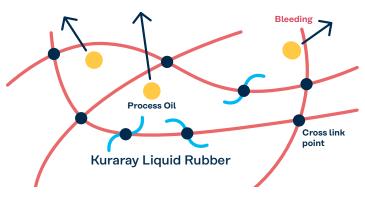


Kuraray Liquid Rubber

Kuraray Liquid Rubber beyond a reactive plasticizer


Benefits:

- Plasticizing effect
- Enhanced properties
- Improved final product shelf-life

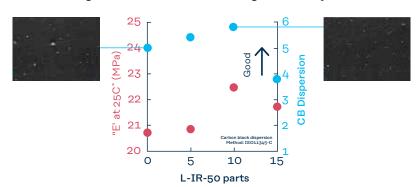
Depending on molecular weight (MW), Kuraray Liquid Rubber can act as rubber replacement or a reactive plasticizer.

Benefits:

- Co-vulcanizable with solid rubber
- Significant reduction in migration
- Reduces processing time

Kuraray Liquid Rubber is cross-linkable with base rubber and acts like a process oil, but does not bleed.

Significant performance and environmental advantages with Kuraray Liquid Rubber


Mooney, Electric (Index) 110 Mooney Viscosity (130°C) **Electricity consumption** 105 100 95 90 85 80 10 L-IR-50 Parts

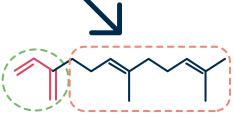
Formulation NR (STR20) 100 - 85, L-IR-50 0 - 15, CB (N330) 70, TDAE 5, Vulcanization, Antioxidant ZnO (5), Stearic Acid (2), AO 6C (1), AO RD (1), Phenol resion (10), HDOT20 (4), Accelerator NS (1.7), HMT (1)

Benefits:

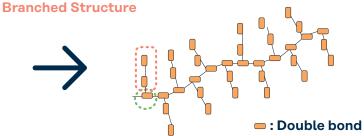
- Reduces electric power consumption
- Lower processing cost
- Better sustainability performance (less energy)

Dynamic viscoelasticity/CB Dispersion

Molecular Weight	Viscosity (Pa•s at 38°C)	Glass Transition Temp. (°C)	Features and main applications
28,000	70	-63	 Reactive plasticizer (NR, IR, SBR, BR, IIR etc.) Tire, conveyor belt, rubber goods Pressure sensitive adhesives/hot melts
54,000	500	-63	 Automotive sealants, coatings and adhesives Plasticizer for printing plates Binder for brake pads, grinding wheels, etc.
48,000	400	-95	 Hot melt adhesives/PSA (SIS, SBS, EVA) Automotive sealants, coatings and adhesives
34,000	200	-60	 Improves adhesion to metals and fibers Automotive sealants, coatings and adhesives
30,000	430	-59	 Hot melt adhesives/PSA (SIS, SBS, EVA) Binder for brake pads, grinding wheels, etc.
17,000	30	-60	Low temperature reactivity Creating to the uning LIV
35,000	190	-60	 Crosslinkable using UV Pressure sensitive adhesives (UV curing adhesives)
5,500	0.6	-85	
8,000	1.5	-95	 Reactive plasticizer (NR, IR, SBR, BR etc.) Tire, printing plate
26,000	40	-95	 Coagent for EPDM (peroxide curing)
9,000	6	-60	 Automotive sealants, coatings and adhesives Hot melt/PSA Vinyl content: 5-70%
5,500	5.5	-49	Thermoset PU modification
6,000	6	-50	 Tires, truck and bus tires and rubber goods Improve silica-polymer interaction Improve silica dispersion
6,000	250	-18	 Good compatibility with S-SBR and E-SBR Tires, ultra-high-performance (UHP) tires and rubber goods
8,800	8.3	-60	 Automotive sealants, coatings and adhesives Partially hydrogenated grades are available
10,000	100 (at 60°C)	-6	Damping Flexo printing plates
130,000	70	-70	
30,000	15	-78	Tire, rubber goods, adhesives and sealantsBio-basedSignificant GHG reduction
100,000	520	-78	


Applications*:

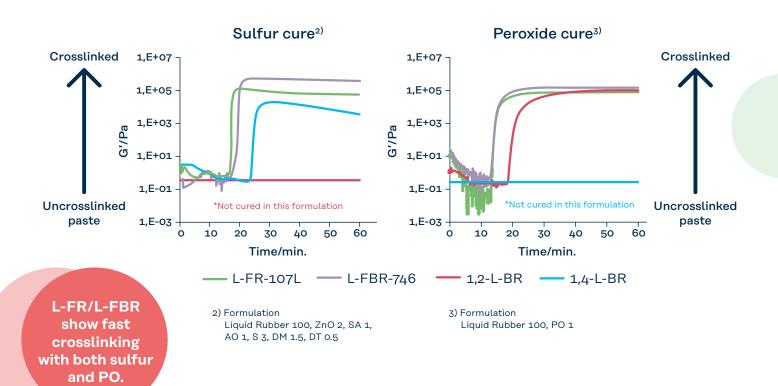
- Tires
- Rubber goods
- Footwear
- Adhesives, sealant and coatings


Benefits:

- Renewable monomer
- Low viscosity
- High reactivity

Reactive site

β-Farnesene


Liquid farnesene rubber: Branched polymer

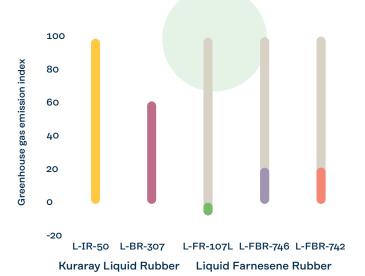
Less entanglement between molecules because of highly branched structure

High Mw and Low viscosity

^{*}For certain applications, liquid farnesene rubber cannot be introduced due to raw material supply relations. Please contact our sales representatives.

Curability of liquid rubbers changes when curing agent is changed.

GHG emission index of **Kuraray Liquid Rubber**


Up to 108% reduction in greenhouse gas emissions*

Principles & Frameworks

- ISO14040:2006 and ISO14044:2006
- Lifecycle Inventory database: IDEA (Inventory Database for Environmental Analyses) version 2.3
- LCIA model: IPCC AR5 100a

System Boundaries

- Oradle to gate
- Biogenic carbon absorption is included
- Incineration and transportation to customer sites are not included

Assumptions and Limitations:

For detailed information on assumptions and limitations, please contact our sales representatives.

Kuraray Liquid Rubber in tires

Three key parameters determine tire performance: grip, fuel efficiency and durability. Kuraray Liquid Rubber offers advantages for tire geometry, dynamic tire properties, heat generation and processability.

Kuraray Liquid Rubber functions as reactive plasticizers but have far higher molecular weight than normal plasticizers, that reduces bleeding and soiling of molds.

Benefits:

- Improves grip performance (ice, wet and dry)
- Improves rolling resistance
- Improves abrasion resistance
- Low migration
- Improves filler dispersion

Beadfiller/APEX:

- High hardness with excellent processability
- Improved dimensional stability
- Better filler dispersion
- Improve green tack

Applicable grades: L-IR-50

Side wall / Carcass:

- Improved dimensional stability
- Enhanced surface smoothness of calendered sheet
- Lower mill shrinkage
- Better green tackiness
- Higher production rates

Applicable grades: L-IR-50, L-BR-302, L-BR-307

Tread:

- Improved dynamic and physical proterties (tanδ)
- Excellent abrasion resistance, wet and ice grip
- Excellent extrudability

Applicable grades: L-IR-50, L-BR-302, L-BR-307, L-SBR-870, L-SBR-841N, L-FR-107L, L-FBR-742, L-FBR-746, GS-L-BR-114

Cushion:

- Enhanced surface smoothness of calendered sheet
- Reduced extrusion temperature
- Better green tackiness
- Improvement of dynamic properties

Applicable grades: L-IR-50, L-BR-302, L-BR-307

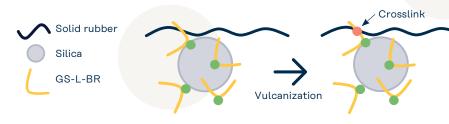
Rim cushion:

- Good balance of processability and physical properties
- Improved abrasion resistance

Applicable grades: L-IR-50

Silane-modified GS-L-BR

Silane coupling agents are used in silica-filled rubber compounds to increase filler-polymer interactions and lower the filler-filler interactions.


In addition, silane functionalized low molecular weight 'liquid' polymers can be used. Our silane-modified GS-L-BR is one of the latest development of functionalized liquid rubber grades.

Features

- Improves silica dispersion
- Ocrosslinkable with rubber base
- High reactivity with silica
- Improves silica-polymer interaction
- Lower silica-silica interaction

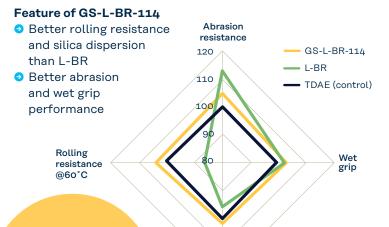
What is the function of GS-L-BR in rubber compounds?

Expectation

- Good silica dispersion
- Improved abrasion resistance

Formulation & mixing conditions

	Control	Formulation
S-SBR	80	80
BR	20	20
TDAE	40	30
Kuraray liquid rubber	-	10
Silica	100	100
SCA (Si-75)	8.0	8.0
ZnO	3.0	3.0
Stearic Acid	2.5	2.5
Anti oxidant 6C	2.5	2.5
Wax	2.0	2.0
OT-20	1.9	1.9
Accelerator DPG	0.5	0.5
Accelerator CBS	3.5	3.5
Accelerator TBTD	1.5	1.5


Structure & typical properties of GS-L-BR

Development code	Structure	Mw	Tg (°C)	Number of functional group / chain
GS-L-BR-114*	Graft functionalized	6,000	-50	2
L-BR	Non-functionalized	5,500	-49	none

^{*}Only for the research purpose.

Mixing Conditions			
NP1	Banbury-type mixer		
	0'00"	Solid rubber (60°C)	
	0'20"	Filler, SCA, Oil, LR, AO, ZnO, Stearic acid	
	5'30"	Dump out (150-160°C)	
NP2		Banbury-type mixer	
	0'00"	First mixed compound (90°C)	
	4'30"	Dump out (150-160°C)	
FM		Banbury-type mixer	
	0'00"	Compound, S, Accelerator (50°C)	
	0'75"	Dump out (90-100°C)	
	,	·	

Summary

Silica dispersion

GS-L-BR is superior in terms of well-balanced properties.

Kuraray Liquid Rubber in automotive sealants

For automotive adhesives, grades of Kuraray Liquid Rubber, which are high-viscosity synthetic rubbers, offer different functionalities: improving adhesion to metal surfaces while tailoring damping performance.

In addition, Kuraray Liquid Rubber improves adhesion to oily surfaces and is used where low-temperature performance and quick curing are required. With liquid farnesene rubber, Kuraray even offers a bio-based alternative for automotive sealants.

Benefits:

- Bio-based material
- OHigh reactivity curable with both sulfur and peroxide
- Good low temperature properties thanks to low Tg
- Provides damping properties over a wide temperature range combined with high Tg liquid rubber
- Foams with fine cells

Applications:

- Mastic sealant
- Foam sealant
- Anti-flutter

Automotive applications and benefits

Grade	Applications	Benefits
L-IR-390	 Sealants Sprayable/foam-able sealants Anti-flutter adhesives Oil replacement 	 Cold temperature properties Ip/Bd structure provides good crack resistance, better damping performance, good compatibility with BR, hydrocarbon and rosin resins Good solubility in aliphatic, aromatics and ethers High reactivity due to Ip/Bd structure Improves expansion in foams Improves heat and abrasion resistance
L-IR-403 L-IR-410	 Spot welding sealants Anti-flutter adhesives Flexibility improver for Multi-substrate bonding 	 Good bonding to wide variety of substrates Joining of dissimilar materials Improved adhesion to oily surfaces Softness Higher Mw helps prevent sagging
L-IR-30 L-IR-50	 Mastic sealants Extrudable rubber-based patches Oil replacement Underbody coatings 	 Better processability and reactivity in mastic sealants (BR, SBR, IR) No migration Compatible with a broad range of vegetable oils Higher Mw helps prevent sagging
L-SBR	 Sprayable/foam-able sealants Spot welding sealants High damping foams and acoustic baffles (LASD) 	 Excellent sound and vibration damping High tanδ over a wide temperature range Improves reactivity Improves expansion in foams

Promote adhesion to metal: L-IR-403 & L-IR-410

L-IR-30

Shear strength test	Al Plate	Steel Plate
Max load (N)	82	77
Elongation (mm)	1.8	0.9

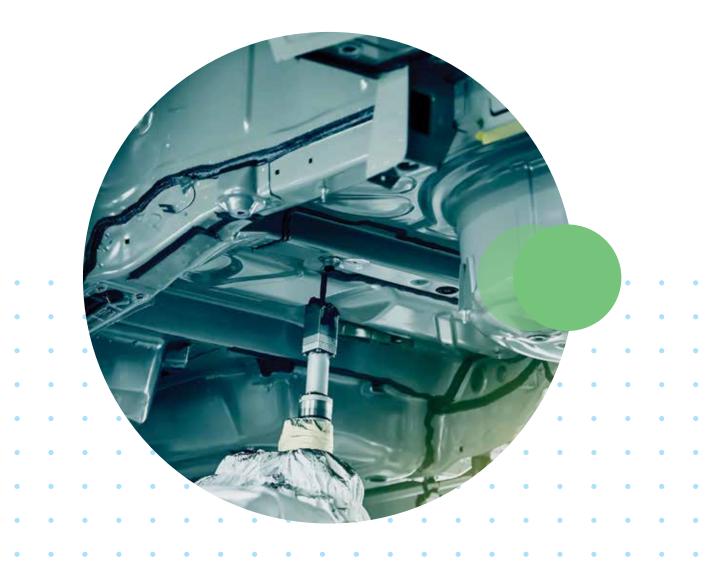
L-IR-403

Shear strength test	Al Plate	Steel Plate	
Max load (N)	721	650	
Elongation (mm)	4.4	4.1	

Adhesion failure → Shear stress

Shear stress

Cohesion failure


Adhesion area: 25 mm x 25 mm

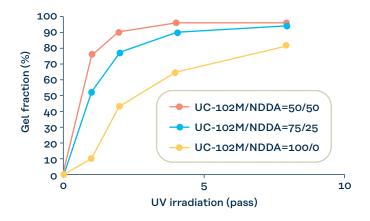
Kuraray Liquid Rubber in adhesives

Kuraray Liquid Rubber is commonly used in applications such as pressure sensitive adhesives and hot melts. The lower molecular weight grades improve tack and adhesive properties. The UV crosslinkable grades provide excellent flexibility, tack, low shrinkage and moisture resistance, which are ideal for flexible electronic applications.

Benefits:

- Preservation of rubber-like properties at low temperatures
- Oclorless, transparent, odorless without halogen residuals
- Ocertain grades are suitable for food contact applications
- Improved adhesion to metal and glass possible with functionalized grades
- Orosslinkable by UV with methacrylic grades

Solvent	L-IR-30, 50	L-IR-410
Hexane, Heptane, Cyclohexane	А	А
Toluene, Xylene	Α	А
Methyl Acetate	С	С
Ethyl Acetate	С	A
n-Butyl Acetate	A	А
Acetone	С	С
MEK	С	A
MIPK	В	A
МІВК	Α	А
Methanol, Ethanol	С	С
Chloroform	A	A
Carbon Tetrachloride	A	A
Carbon Disulfide	Α	A
Cyclohexanone/Xylene (50/50 wt/wt)	A	A

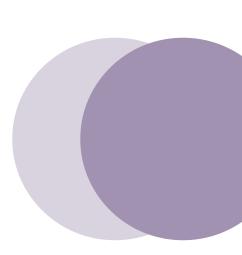

Polymer content: 20 wt% at 25 $^{\circ}\text{C}$

A: Soluble

B: Partially soluble

C: Insoluble

UV Crosslinking system for UC-102M



Lamp: High pressure mercuray lamp

Curing conditions: Light intensity: 40 mW/cm², Conveyor speed: 2 m/ min, 1 Pass = 188 mJ/cm²

Thickness: 0.8 mm

Gel fraction test: Toluene extraction at 25°C for 24 hours

Adding value to your products—worldwide

Kuraray is a world leader in specialty chemicals and functional materials. We are committed to developing products that ensure quality and value while helping our customers differentiate themselves from their competition.

Kuraray's Elastomer Division started in 1972 with the production of polyisoprene rubber and the development of new rubber materials based on Isoprene in the Kashima Plant. From the first production line, the Elastomer Division continuously grew and invented new products such as KURARAY LIQUID RUBBER, ISOBAMTM, SEPTONTM, HYBRARTM, and KURARITYTM.

Kuraray strives to develop new and innovative highperformance products for customers around the globe. Learn more about Kuraray's Elastomer products, visit elastomer.kuraray.com.

Kuraray Co., Ltd.

Tokiwabashi Tower 2-6-4, Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan

P +81 3 6701 1616

kuraray.liquidrubber@kuraray.com

Kuraray Trading (Shanghai) Co., Ltd.

3 Hongqiao Road, Xuhui District Shanghai 200030, China

P +86 21 6407 9182

o elastomer.china@kuraray.com

Kuraray Europe GmbH

Philipp-Reis-Straße 4 65795 Hattersheim am Main Germany

P +49 69 305 85300

elastomer@kuraray.com

Kuraray India Private Limited

Prius Platinum 2nd Floor B Wing, D3 District Centre Saket New Delhi -110017, India

P +91-11-4090-4400

o inquiry.kid@kuraray.com

Kuraray America, Inc.

3700 Bay Area Blvd., Suite 680 Houston, Texas 77058 United States of America

P 1.800.423.9762

septon.sales@kuraray.com

Kuraray South America Ltda.

Av. Paulista, 1636 - Sala 405 01310-200 Sao Paulo, Brasil

P +55-11-2615-3531

🧿 elastomer.sa@kuraray.com

© Kuraray Co., Ltd. 2023

SEPTON, HYBRAR, KURARITY and ISOBAM are trademarks or registered trademarks of Kuraray Co., Ltd. Trademarks may not be applied for or registered in all countries.

Disclaimer: The information provided herein corresponds to Kuraray's knowledge on the subject at the date of its publication. This information may be subject to revision as new knowledge and experience becomes available. The information provided falls within the normal range of product properties and relates only to the specific material designated; this data may not be valid for such material used in combination with any other materials or additives or in any process, unless expressly indicated otherwise. The data provided should not be used to establish specification limits or used alone as the basis of design; they are not intended to substitute for any testing you may need to conduct to determine for yourself the suitability of a specific material for your particular purposes. Final determination of suitability of any material or process and whether there is any infringement of patents is the sole responsibility of the user. Since Kuraray cannot anticipate all variations in actual end-use conditions, Kuraray makes no warranties and assumes no liability in connection with any use of this information.

